

on Only. Created with Aspose.PDF. Copyright 2002-2018 Aspose Pty Ltd.

MINISTRY OF ENVIRONMENT AND FORESTRY DIRECTORATE GENERAL OF CLIMATE CHANGE

Published by:

Directorate GHG Inventory and Monitoring Reporting Verification Directorate General of Climate Change

Manggala Wanabakti Block IV 6th Floor Wing A Jl. Jend. Gatot Subroto—Jakarta Pusat, DKI Jakarta 10270, Indonesia Telp./Fax: 021-57903073, Email: tuigrkppi@gmail.com

Website: http://www.ditjenppi.menlhk.go.id

EMISSION REDUCTION REPORT

FOR THE INDONESIA-NORWAY PARTNERSHIP

DIRECTORATE GENERAL OF CLIMATE CHANGE MINISTRY OF ENVIRONMENT AND FORESTRY REPUBLIC OF INDONESIA 2019

Preface

Indonesia have committed to a new International climate agreement through the ratification of Paris Agreement in 2016. To achieve this commitment, Indonesia and the Kingdom of Norway agree to continue the partnership to further promote the implementation of REDD+ and to protect the remaining natural forests as well as the carbon-rich peatlands in Indonesia, which are part of the Letter of Intent (LoI) between the

Government of Indonesia and the Government of Kingdom of Norway that has been signed in 2010.

Since the commencement of the LoI, both countries show strong commitments in addressing issue of climate change mitigation action and in particular supporting the preparedness of REDD+ implementation in Indonesia. Various supports from the government of Norway has been granted to support initiatives in improving capacities and developing systems for implementation of REDD+ and peatland management in Indonesia. Indonesia, as the REDD+ implementing countries, continue to meet the reporting requirement to the UNFCCC. The 1st Forest Reference Emision Level (FREL) has been submitted to and approved by the UNFCCC in 2016. Furthermore, in 2018 Indonesia submitted the Technical Annex of BUR to UNFCCC, which presents the emission reduction results by Indonesia. In paralel, the Indonesia REDD+ Performance report is also upload at Lima REDD+ Hub Website.

As part of the 3rd phase of Indonesia-Norway LoI, both countries have developed the agreed MRV Protocol outlining further mechanism of the result-based payment specifically for the implementation of Indonesia-Norway REDD+ Partnership. The protocol was developed under mutual relationship and common goals to contribute to the international climate agreement through reduction of emissions from tropical deforestation, forest degradation and peatland management.

As the next steps, Indonesia develops the baseline for the result-based payment, as agreed in the MRV Protocol and submits the emission reduction report from the avoided deforestation and forest degradation for the Indonesia-Norway Partnership. We acknowledge the contributions of relevant institutions and team of experts during preparation and development of the RBP baseline and Emission Reduction Report for The Indonesia-Norway Partnership.

Jakarta, May 2019

Dr. Ir. Ruandha Agung Sugardiman, M.Sc Director General of Climate Change

Table of Contents

PREFACE	i
TABLE OF CONTENTS	ii
LIST OF TABLES	iii
LIST OF FIGURES	iii
1. INTRODUCTION	. 1
2. RESULT BASED PAYMENT BASELINE INDONESIA-NORWAY PARTNERSHIP	1
2.1 Definitions Used	2 3 3 3 3 4 4 4
2.4.3 RBP Baseline Calculation	
2.5.1 Estimates Emission from Deforestation	5 6
3. RESULTS	. 7
4. DESCRIPTION OF THE NATIONAL FOREST MONITORING SYSTEM (NFMS) AN THE INSTITUTIONAL ROLES AND RESPONSIBILITIES FOR MRV OF THE RESULTS 5. DEMONSTRATION THAT METHODOLOGIES ARE CONSISTENT WITH RBP BASELINE	8
6. NECESSARY INFORMATION THAT ALLOWS FOR THE RECONSTRUCTION OF THE RESULTS	11
7. UNCERTAINTY AND BIAS (TEDDY R)	
8. PROPOSED RESULT BASED PAYMENT	
REFERENCES	
ANNEXES	

List of Tables

Table 1.	Land cover classes used in the RBP baseline2
Table 2.	Deforestation Emission Factor 4
Table 3.	Forest Degradation Emission Factor4
Table 4.	Historical (2006/2007 – 2015/2016) and projected (2016/2017 – 2019/2020) annual emission from deforestation and forest degradation (in tCO2), calculated using historical data of 2006/2007 – 2015/20167
Table 5.	Emision reduction from avoided deforestation and forest degradation7
Table 6.	Uncertainty calculation for emission from deforestation and forest degradation
List o	f Figures
Figure 1	. Average annual historical emissions from deforestation expressed in millions tCO_2
Figure 2	. Average annual historical emissions from forest degradation expressed in millions tCO26
Figure 3	Annual and average annual historical emissions from deforestation and forest degradation (in $MtCO_2$) in Indonesia from 2006/2007 to – 2015/2016 and projected emission from 2016/2017 – 2019/2020 6
Figure 4	. Annual emissions from deforestastion and forest degradation. Pale colours depict historical emissions and green colours depict 2016/2017 emissions
Figure 5.	General Indonesian Land Cover map workflow 10
List o	f Annexes
	. The calculation of emissions from deforestation and forest degradation
	Emissions from peat decomposition
Annex 3	Emissions from peat fire26

1. Introduction

Government of Indonesia and Government of Kingdom of Norway have been officially agreed to work together in protecting the remaining natural forest in Indonesia, through the "Cooperation on reducing green house gas emissions from deforestation and forest degradation". The Cooperation was well explained on the Letter of Intent between the Government of Indonesia and the Government of Kingdom of Norway which has been signed on May 26th, 2010. In general, the Government of Kingdom of Norway will provide payment to Government of Indonesia, based on the performance of reducing green house gas emissions from deforestation and forest degradation.

One of the products that should be developed in this Cooperation is Emission Reduction Report that provides information on the reference emission level which will be defined as Result Based Payment (RBP) baseline, and the performance of emission reduction in 2017. This report is developed by refering to MRV protocol for the Indonesia-Norway partnership on climate, forests and peat.

This report is an independent document specifically used for Indonesia-Norway Cooperation on reducing green house gas emissions from deforestation and forest degradation. The RBP baseline in this report is different to Indonesia Forest Reference Emission Level (FREL) that has been submitted to UNFCCC, and passed the technical assessment in 2016. The main different between RBP baseline and FREL is its reference period, where the RBP Baseline used the period of 2006-2016, while FREL used period of 1990-2012.

The Ministry of Environment and Forestry (MoEF) is responsible to develop the emission reduction report and submit it to the Government of Kingdom of Norway. This report will be used as a basis of payments from Government of Kingdom of Norway to the performance or achivement of Government of Indonesia in reducing the green house gas emission from deforestation and forest degradation during 2017-2020.

In addition, based on the document annex for MRV protocol, Indonesia also reported reducing emissions from peatlands. Reports on reducing emissions on peatland include emissions from peat decomposition and emissions from peat fires. Reports for peatlands are presented in Annex 2 and 3 of this report.

2. Result Based Payment Baseline Indonesia-Norway Partnership

2.1 Definitions Used

The definitions used in this document are consistent with those in first FREL. The definitions restated in this document include, among others: definition of forest, deforestation, forest degradation and Baseline for Result Based Payment

1

2.1.1 Forest

The Government of Indonesia through the Minister of Forestry Decree No. 14/2004 regarding A/R CDM, has set up the definition of forest as "Land with a minimum area of 0.25 hectares that contains trees with canopy cover of at least 30 percent that are capable of reaching a minimum height of 5 meters at maturity" (MoFor, 2004).

Forests used in this document refers to the "working definition", defined as "a land area of more than 6.25 hectares with trees higher than 5 meters at maturity and a canopy cover of more than 30 percent". The area span is based on the land-cover maps produced through visual interpretation of satellite images at a scale of 1:50.000 where the minimum area for polygon delineation is 0.25 cm² which equals to 6.25 ha (minimum mapping unit).

Forests used as basis for calculation refer to natural forests, following the classification of Ministry of Environment and Forestry's land cover map (Table 1) and has been used in the Forest References Emissions Level. The natural forests included six classes, i.e. primary dry land forest, secondary dry land forest, primary swamp forest, secondary swamp forest, primary mangrove forest, and secondary mangrove forest.

Table 1 Land cover classes used in the RBP baseline

No	Land-cover class	Abbreviation	Category	IPCC
1.	Primary dryland forest	PF	Natural forest	Forest
2.	Secondary dryland forest	SF	Natural forest	Forest
3.	Primary mangrove forest	PMF	Natural forest	Forest
4.	Secondary mangrove forest	SMF	Natural forest	Forest
5.	Primary swamp forest	PSF	Natural forest	Forest
6.	Secondary swamp forest	SSF	Natural forest	Forest
7.	Plantation forest	TP	Plantation	Forest
8.	Estate crop	EP	Non-forest	Crop land
9.	Pure dry agriculture	AUA	Non-forest	Crop land
10.	Mixed dry agriculture	MxUA	Non-forest	Crop land
11.	Dry shrub	Sr	Non-forest	Grassland
12.	Wet shrub	SSr	Non-forest	Grassland
13.	Savanna and Grasses	Sv	Non-forest	Grassland
14.	Paddy Field	Rc	Non-forest	Crop land
15.	Open swamp	Sw	Non-forest	Wetland
16.	Fish pond/aquaculture	Po	Non-forest	Wetland
17.	Transmigration areas	Tr	Non-forest	Settlement
18.	Settlement areas	Se	Non-forest	Settlement
19.	Port and harbor	Ai	Non-forest	Other land
20.	Mining areas	Mn	Non-forest	Other land
21.	Bare ground	Br	Non-forest	Other land
22.	Open water	WB	Non-forest	Wetland
23.	Clouds and no-data	Ot	Non-forest	No data

2.1.2 Deforestation

Deforestation is defined as one-time conversion of natural forest cover to other land-cover categories that occurred in the same area. This means that the deforestation occurred in regenerated forests, that previously deforested, are not included in the calculation. This includes conversion of natural forest cover into plantation forest or non-forested lands.

2.1.3 Forest Degradation

Forest degradation is defined as a transition of primary forest classes, which include primary dryland, primary mangrove and primary swamp forests, to secondary forest classes, which reduce the quantity of carbon stocks as a result of human activities. These represent secondary forests that were subject to selective logging or other disturbance events (e.g. fires and encroachment).

2.1.4 Baseline for Result Based Payment

Baseline for result based payment (RBP) is a benchmark for assessing Indonesia's performance in implementing REDD+ under the framework of Norway-Indonesia Partnership. The performance of emission reduction was expressed in tons of carbon dioxide equivalent per year. The technical definition of RBP baseline adopted in this report is a projection of CO₂ gross emissions that is used as a reference to compare against actual emissions at a given point of time in the future. In accordance with MRV protocol document, the RBP baseline will be updated periodically indicatively every 5 years, taking into account any updates of Indonesia's FREL that might be submitted to the UNFCCC. This RBP baseline was developed based on historical forest dynamics and serves as a benchmark for future performance evaluation of REDD+ activities.

2.2 Area, Activities and Pools Covered Results

2.2.1 Area Covered

RBP baseline calculation cover the whole natural forests in Indonesia, which includes dryland, mangrove, and swamp forests from both primary and secondary classes.

2.2.2 Activities Covered

RBP baseline calculation covers the activities related to deforestation and forest degradation. Other REDD+ activities such sustainable management of forest, role of conservation, and enhancement of forest carbon stock were not covered in the calculation.

2.2.3 Pools and Gases

RBP baseline calculation considers aboveground biomass (AGB) as the most significant carbon pool, and reports the greenhouse gas emissions of carbondioxide (CO₂).

2.3 Data

2.3.1 Activity Data

Activity data were generated from the series of land cover maps produced by the Ministry of Environment and Forestry (MoEF), which are the product of the National Forest Monitoring System (NFMS). The maps are accessible via the website (http://webgis.menlhk.go.id:8080/nfms_simontana/). The datasets of 2006, 2009, 2011, 2012, 2013, 2014, 2015, and 2016 land cover maps were used to analyse historical land cover changes, and calculate the emissions estimates.

2.3.2 Emission Factors

RBP baseline calculation uses the emission factors that identical to emission factors used in the 1st Indonesia's FREL. The primary data source used to derive the emission factors were the National Forest Inventory (NFI) - a national program initiated by the Ministry of Forestry in 1989 and supported by the Food and Agriculture Organization of the United Nations (FAO) and the World Bank through the NFI Project. Additionally, research and published data collected from Indonesian sites were used to fill critical data gap currently not available for analysis. Detail emission factor for deforestation and forest degradation see table 2-3.

Table 2 Deforestation Emission Factor

Forest Classes	Emission Factors of Deforestation (tCO2-e)							
i diest classes	JAWA	KALIMANTAN	MALUKU	NUSABALI	PAPUA	SULAWESI	SUMATERA	
Primary Dryland Forest	458,8	464,7	519,9	473,3	412,4	474,7	463,3	
Secondary Dryland Forest	294,1	350,7	383,1	280,6	311,2	356,2	314,3	
Primary Mangrove Forest	455,2	455,2	455,2	455,2	455,2	455,2	455,2	
Primay Swamp Forest	332,5	474,0	332,5	332,5	308,4	369,8	380,9	
Secondary Mangrove Forest	348,0	348,0	348,0	348,0	348,0	348,0	348,0	
Secondary Swamp Forest	274,8	294,1	274,8	274,8	251,3	221,3	261,1	

Note: If not avaialable data for the emission factor by island, used National Average

Table 3 Forest Degradation Emission Factor

ForestClasses		Emission Factors of Forest Degradation (tCO2-e)							
Forestciasses	JAWA	KALIMANTAN	MALUKU	NUSABALI	PAPUA	SULAWESI	SUMATERA		
Primary Dryland Forest	164,7	114,0	136,8	192,7	101,3	118,5	149,0		
Secondary Dryland Forest	107,3	107,3	107,3	107,3	107,3	107,3	107,3		
Primary Mangrove Forest	57,7	179,9	57,7	57,7	57,1	148,5	119,7		

Note: If not available data for the emission factor by island, used National Average

2.4 Methodology and Procedures

2.4.1 Forest Cover Change Analysis

Annual forest cover change analysis was conducted by overlaying land cover maps of two subsequent periods. Referring to the working definition, deforestation is the change of

natural forests into other classes that occurred one time at any given location across the entire observation period (2006/2007 – 2015/2016).

Forest degradation is the change of primary forests to secondary forests classes in the subsequent year. As elaborated in Margono *et al* (2015), the land cover (LC) data set is a series (T_1 to T_{1+n}) of data, and the degraded forest was generated by comparing the LC of T_n (class of primary forests in the first observation period) to the LC of T_{n+1} (becoming class of secondary forests in the consecutive observation period). Detail information for the calculation proccess see annex 1.

2.4.2 Reference Period

RBP baseline was calculated based on the period of 2006/2007 – 2015/2016 as the reference period.

2.4.3 RBP Baseline Calculation

RBP baseline calculation was calculated by using the average annual emissions from 2006/2007 to 2015/2016, i.e. from historical emissions from deforestation and forest degradation.

2.5 Results of the Construction of RBP Baseline

2.5.1 Estimates Emission from Deforestation

The averaged annual emission from deforestation in the period 2006/2007 - 2015/2016 is $236.9 \, MtCO_2 \, yr^{-1}$ (see Figure 1).

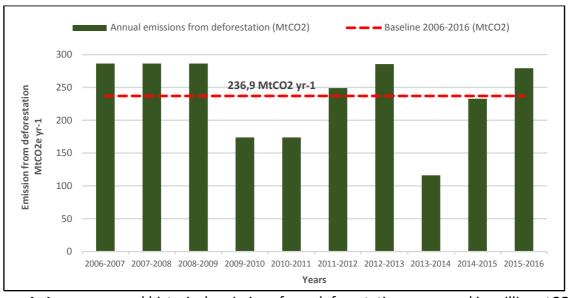
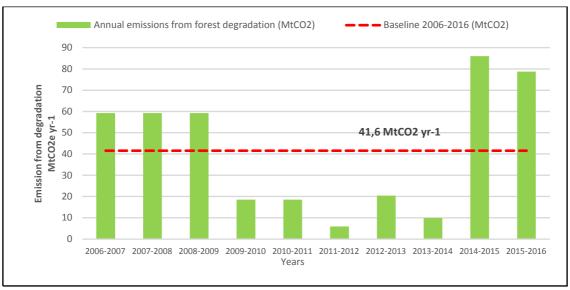



Figure 1. Average annual historical emissions from deforestation expressed in millions tCO₂.

2.5.2 Estimates Emission from Forest Degradation

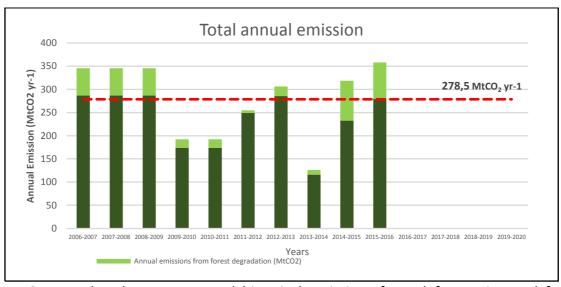

The annual emission from forest degradation in the period 2006/2007 - 2015/2016 is $41.6 \, \text{MtCO}_2 \, \text{yr}^{-1}$ (see Figure 2).

Figure 2. Average annual historical emissions from forest degradation expressed in millions tCO₂.

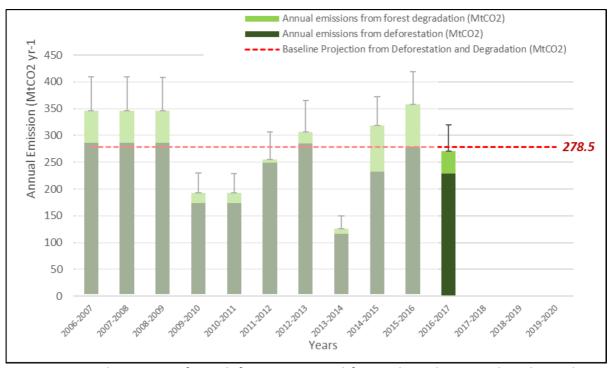
2.6 Constructed and Projected RBP Baseline

The annual total emissions from deforestation and forest degradation in the period of 2006/2007 - 2015/2016 is 278.5 MtCO₂ yr⁻¹ (see Figure 3).

Figure 3. Annual and average annual historical emissions from deforestation and forest degradation (in $MtCO_2$) in Indonesia from 2006/2007 to -2015/2016 and projected emission from 2016/2017 - 2019/2020.

Baseline emissions from deforestation and forest degradation are generated based on annual emissions in the period of 2006/2007 to 2015/2016. Detailed annual emissions are shown in the Table 4.

Table 4 Historical (2006/2007 - 2015/2016) and projected (2016/2017 - 2019/2020) annual emission from deforestation and forest degradation (in tCO2), calculated using historical data of 2006/2007 - 2015/2016


Year	Deforestation	Forest Degradation	Total annual emission	
2006-2007	286.400.629	59.226.954	345.627.583	
2007-2008	286.400.629	59.226.954	345.627.583	
2008-2009	286.400.629	59.226.954	345.627.583	
2009-2010	173.891.040	18.511.560	192.402.600	
2010-2011	173.891.040	18.511.560	192.402.600	
2011-2012	248.937.119	5.920.802	254.857.921	
2012-2013	285.587.006	20.395.198	305.982.204	
2013-2014	116.066.514	9.840.253	125.906.767	
2014-2015	232.677.722	85.989.932	318.667.654	rical
2015-2016	279.222.082	78.664.647	357.886.729	Historical
2016-2017	236.947.441	41.551.481	278.498.922	
2017-2018	236.947.441	41.551.481	278.498.922	
2018-2019	236.947.441	41.551.481	278.498.922	line
2019-2020	236.947.441	41.551.481	278.498.922	Baseline

3. Results

Emission reductions are calculated through deduction of baseline emission with actual annual emission. In this report, the baseline emissions were generated from the average emission of 2006/2007 - 2015/2016. The baseline for deforestation and forest degradation are $236,947,440\, tCO_2$. year⁻¹ and $41,551,481\, tCO_2$. year⁻¹, respectively. While the 2017/2018 actual emission was derived from the current emission from deforestation ($228,349,830\, tCO_2$) and/or forest degradation ($42,743,041\, tCO_2$).

Table 5 Emision reduction from avoided deforestation and forest degradation

Activity	Emission Reduction (tCO ₂)	Percentage from Baseline (%)
Deforestation	8,597,611	3.63%
Forest Degradation	-1,191,560	-2.87%
Total Emision Reduction	7,406,051	2.66%

Figure 4 Annual emissions from deforestastion and forest degradation. Pale colours depict historical emissions and green colours depict 2016/2017 emissions

In 2017, Indonesia has reduced 7,406,051 tCO2 emission from both avoided deforestation and forest degradation (See Table 5 and figure 4). Avoided emission from 2016/2017 deforestation is 8,597,611 tCO $_2$ (3.6% from the baseline). However, there is no emission reduction from forest degradation. It is because the actual emission from forest degradation is 2.9% higher than RBP baseline (-1,191,560 tCO $_2$). It thus deducts the performance from total emission reduction.

Description of the National Forest Monitoring System (NFMS) and the institutional roles and responsibilities for MRV of the results

The Ministry of Forestry of Indonesia (MoF) developed forest resource monitoring through National Forest Inventory (NFI) project of Indonesia, established in 1989 (Margono et al., 2016). The NFI project was executed for years under collaboration of the Government of Indonesia (GOI) and Food and Agriculture Organization (FAO). The use of satellite imagery to produce land cover map, which was pre-dominantly Landsat data, was introduced during the periods of NFI. After termination of the NFI project at around 1997/1998, tasks for operationally mapping land cover were transferred into the Forestry Planning Agency/Directorate General (DG) of Forestry Planning of the Ministry of Forestry. The system is now named National Forest Monitoring System (NFMS), which is based on a regular production of land cover map of Indonesia generated in three years interval, and provided in 23 land cover classes including class of cloud cover and no-data. Example of the Indonesia's land cover map is in figure 1, and the National Forest Monitoring System is available online at

http://webgis.menlhk.go.id:8080/nfms simontana/ for data display, viewing and simple analysis.

Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) have been used as main data source since early 1990s (Margono et al., 2016). In the tropical region such as Indonesia, clouds and haze are major problems of using optical remotely sensed data, including Landsat. Unluckily, unlike Brazil, Indonesia has no seasonal cloud-free window that offering opportunity to capture clouds-free images [Broich et al 2011 in Margono et al., 2016]. The limited cloud-free image coverage and budget constraint restrict data availability for the system. However since 2008, given the change in Landsat data policy, the United States Geological Survey (USGS) has made Landsat data freely available over the internet [Wulder et al, 2012, Roy et al 2010]. Although most of data are available online at around 2009, the policy significantly gives Indonesia a chance and benefit to increase data available for the system. Total Landsat data to cover the entirety of Indonesia within selected year's interval were approximately 218 scenes.

At the end of 2014, the NFMS established MoU with National Space Agency (LAPAN), particularly in Landsat data provision for ensuring the data sustainability of the NFMS. From that point, LAPAN would automatically provide mosaic of Landsat covering Indonesia (mainly OLI and additional ETM+) on regular basis, which at first would be twice a year. The plan is implemented for 2015 onward.

The 23 land cover classes were generated based on physiognomy or appearance of biophysical covers that visually distinguished by remote sensing data used: Landsat 30 meter spatial resolution. Detail land-cover category is described in Margono et al., 2016. Although in some extent names of land cover classes mixture to land uses, such as forest plantation or estate crops, object identification over the imagery is purely based on existing appearance, not probable cover or land uses. Several ancillary data sets were used for reference during the process of delineation, to catch as much as valuable information for classification.

Visual classification carried out by digitizing on screen technique using key elements of image/photointerpretation. Under standard GIS software, feature with distinctive existing appearance were visually taken, carefully and manually delineated on the screen to create closed polygons and assigned into designated classes (Figure 4). Recommended maximum scale for classification process is 1:100.000 for using only multispectral bands (e.g. band 5-4-3) and 1:50.000 for using panchromatic band for data registration. A minimum unit polygon is 6.25 hectares or equal to 2.5 cm x 2.5 cm at the maximum zoom screen of 1:50.000 scales or 25 hectares at 1:100.000 scales. Right now, the national land cover map of Indonesia is made available at the scale minimum of 1:250.000.

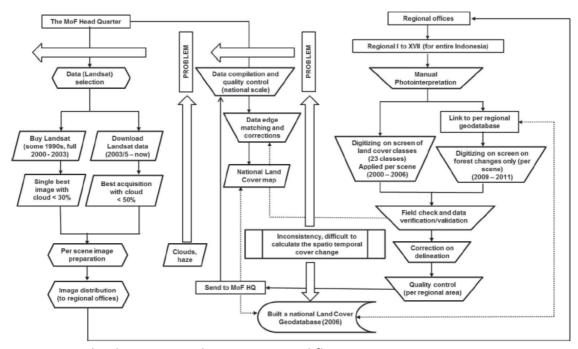


Figure 5 General Indonesian Land Cover map workflow

QC/QA for the land-cover data was performed using ground-truth points distributed throughout Indonesia. In addition, the assessment of land cover changes uncertainty uses reference data that was generated by using a set of 10,000 of 30x30m grids corresponding to time series of Landsat satellite image pixels (1985-2016). This reference data was selected throughout the country using a simple random sampling technique. The establishment of reference points were also corresponded to other data such as SPOT 6 and 7 satellites from 2013-2016, minimum and maximum values of NDVI, and very high resolution satellite images from Google Earth.

In general, three main problems exist within existing NFMS. Those are (a) presence of persistent clouds cover, (b) inconsistency within the mapping processes, and (c) inability to give near-real time information to match the dynamic recovery of vegetation disturbances. Problems exist due to complex and sometimes conflicting definitions for land cover classification, including forest and deforestation definition. Technically, problems occurred due to lack of adequate data, robust methodologies, and insufficient infrastructure to perform work at a national scale. Adequate data includes timing for data gathering and sufficient pre-processing. Robust methods are linking to rapid needs for supporting carbon monitoring objectives.

The NFMS in a portal is designated to integrate internet ability and forest resource information system in reciprocal (two ways) media information sharing: a step toward the good forest governance, through transparency. As such, information uploaded on NFMS should be maintained, in term of real/near-real time, completeness, and correctness. The current NFMS provides a facility to benefit public participation in updating, correcting, or just commenting the uploaded land cover map. Although currently it might not work as intended, the two ways communication was expected to increase values of correctness, which collected from community in the field as well as from broader users.

5. Demonstration that Methodologies are Consistent with RBP Baseline

This report used a consistent method as in the Chapter 2 on the development of RBP Baseline. This includes consistency in the methodologies used for generating activity data, emission factors, assumptions, definitions, and procedures for estimating CO2 emissions from deforestation and forest degradation.

Below are specific components used for the emission reduction report that are consistent with the methodologies used for generating the RBP baseline:

- The REDD+ activities included in this report were consistent with the RBP Baseline, i.e. the REDD+ activities with most significant emissions (deforestation and forest degradation).
- The activity data used in this report is the annual land cover map that is generated by the NFMS, which is inline with decision 4/CP 15. This land cover map is produced using the same method as in the RBP Baseline.
- The emission factors used in this report source from the same data used from the RBP Baseline and Indonesia 1st FREL.
- The carbon pools presented in this report were above-ground biomass, maintaining the consistency of the same pools as the RBP Baseline.

6. Necessary Information That Allows For The Reconstruction of The Results

For reconstruction of the results, sources of data needed for the reconstruction of the RBP Baseline and the REDD+ results are provided in the following sites:

- The data of forest cover, deforestation and degradation that were produced from land cover maps (derived from Landsat imageries) through NFMS for 2006, 2009, 2011, 2012, 2013, 2014, 2015, 2016 & 2017, are accessible online at http://webgis.menlhk.go.id:8080/nfms_simontana/ or http://geoportal.menlhk.go.id/arcgis/rest/services/KLHK
- 2. Other information related the also can access online at https://geoportal.menlhk.go.id/arcgis/home/
- Complete information (spatial data and tables) for the provision of data that allows for the reconstruction of the RBP Baseline and results of the REDD+ can be accessed by request.

Detail information related the reconstruction the RBP baseline and result see annex 1.

7. Uncertainty and Bias

Uncertainty (U) was calculated following the IPCC 2006 Guidelines, volume 1. Chapter 3. If EA is uncertainty from Activity Data and EE is uncertainty from emission factor from activity j, the combined uncertainty (Uj) is calculated using equation:

$$\Box \Rightarrow \sqrt{1} \Box \Box + \sqrt{1} \Box \Box + \Box \Box \Box$$
 (Equation 1)

Uncertainties from activity data of forest degradation and deforestation were derived from the overall accuracy assessment of land cover map.

A proportion of accuracy contribution (C_j) was calculated from activity j, by involving the uncertainty (U_j) , total emissions occurred in the corresponding activities (E_j) and total emission from the corresponding year (E).

$$C_j = (E_j * U_j)^2 / E$$
 (Equation 2)
 $\Box = *\sqrt{\sum \Box_*^*}$ (Equation 3)

Total uncertainty of each year (TU), was derived from a square root of sum C_i.

The uncertainties of emission factor were generated from the standard error of carbon stock values from every forest type/class in each major island/group of islands. The carbon stock was estimated from the NFI plots that have been established in seven major island/group of islands.

The accuracy for the parameter "activity data" (land cover) is 88% (table 6). While the accuracy for the parameter "emission factor" varies from 50-97% depending on island/group of islands and land cover types. The detailed results of the uncertainty analysis for each assessment period are shown in the tables below.

Table 6 Uncertainty calculation for emission from deforestation and forest degradation

								Year					
Со	mponent	Unit	2006-2007	2007-2008	2008-2009	2009-2010	2010-2011	2011-2012	2012-2013	2013-2014	2014-2015	2015-2016	2016-2017
Activity	Deforestation	ton CO2	286,400,629	286,400,629	286,400,629	173,891,040	173,891,040	248,937,119	285,587,006	116,066,514	232,677,722	279,222,082	228,349,830
	Forest Degradation	ton CO2	59,226,954	59,226,954	59,226,954	18,511,560	18,511,560	5,920,802	20,395,198	9,840,253	85,989,932	78,664,647	42,743,041
	Total emissions	ton CO2	345,627,583	345,627,583	345,627,583	192,402,600	192,402,600	254,857,921	305,982,204	125,906,767	318,667,654	357,886,729	271,092,871
Deforestation	AD uncertainty	%	12	12	11	11	11	11	10	10	10	10	10
	EF uncertainty	%	18	18	18	18	18	18	18	18	18	18	18
	Combined uncertainty	%	21.63	21.63	21.14	21.14	20.99	20.88	20.79	20.74	20.67	20.57	20.57
	Contribution to Variance by Category in Year Base Year	%	321.35	321.35	306.77	364.93	359.75	415.92	376.65	365.49	227.88	257.48	300.13
	Percentage uncertainty in total inventory:	%	17.9	17.9	17.5	19.1	19.0	20.4	19.4	19.1	15.1	16.0	17.3
Forest Degradation	AD uncertainty	%	12	12	11	11	11	11	10	10	10	10	10
	EF uncertainty	%	25	25	25	25	25	25	25	25	25	25	25
	Combined uncertainty	%	27.55	27.55	27.35	27.35	27.23	27.15	27.08	27.04	26.99	26.91	26.91
	Contribution to Variance by Category in Year Base Year	%	22.28	22.28	21.96	6.92	6.86	0.40	3.26	4.47	53.04	34.98	18.00
	Percentage uncertainty in total inventory:	%	4.7	4.7	4.7	2.6	2.6	0.6	1.8	2.1	7.3	5.9	4.2
Uncertainty	Percentage uncertainty in total inventory:	%	18.5	18.5	18.1	19.3	19.1	20.4	19.5	19.2	16.8	17.1	17.8
,	Uncertainty	ton CO2	64,070,134	64,070,134	62,665,139	37,102,031	36,839,727	52,000,651	59,639,727	24,217,187	53,410,429	61,204,246	48,352,478

8. Proposed Result Based Payment

The result based payment baseline for this first reporting period is based on the annual historical average level of each of the following performance indicators: emissions from deforestation and forest degradation. The results based payment baseline for first reporting period is developed using reference period from 2006/2007 – 2015/2016 and valid up to 2019/2020.

Based on MRV Protocol of Norway and Indonesia Partnership, both Parties has agreed terms to treat statistical uncertainty, reversal risk, and possibly other risk factors inclusion of Indonesia's ambition. This treatment term later simplify called set-asides/deductions has been stated in Annex of MRV Protocol that agreed at final meeting between Indonesia and Norway representatives at 7 February 2019. From the reported emission reduction results, the following set-asides/deductions used to determine the maximum number of emission reductions Indonesia can be rewarded for by Norway. The term of set asides/deductions consist of following detail:

- a. From the reported emission reduction results, set-aside/deduction of 20% to reflect the risk of uncertainty in estimates;
- b. In terms of deduction to reflect risk of leakage, Indonesia Norway agreed to not include this deduction due to the baseline and performance of REDD+ in Indonesia – Norway partnership is counted in national level accounting. Therefor, 0% deduction to reflect risk of leakage is set. The 0% deduction from leakage also consistently used in Indonesia National FREL and REDD+ Performance in 2nd BUR that has been submitted to the UNFCCC as Indonesia approach for implementation REDD+ is in National Level;
- c. In terms of to reflect Indonesia's ambition to reduce national GHG emissions, Indonesia and Norway agreed to deduct 15%.

As systems are developed over time and policies and strategies are put in place to reduce uncertainty risk, risk of leakage, and reflection of Indonesia's ambition, the set aside factor can be reduced. For the first reporting period under the Indonesia – Norway agreement, the total set aside factor of 35% will be applied.

As mentioned on Chapter Results, Indonesia has reduced the emission from deforestation and forest degradation in total amounted to 7,406,051 tCO₂. It comprises of 8,597,611 tCO₂ from reduce deforestation and -1,191,560 tCO₂ from forest degradation. The emission reduction results later deducted 35%. Therefor, Indonesia propose Net results amounted to 4,813,933.15 tCO₂ shall be rewarded by Norway for first RBP.

References

- IPCC. 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.
- Margono, B.A., Usman, A.B., Budiharto, Sugardiman, R.A. 2016. Indonesia's Forest Resource Monitoring. Indonesian Journal of Geography 48, 7. https://doi.org/10.22146/ijg.12496.
- MoEF. 2018. Indonesia Second Biennial Report Under UNFCCC. http://ditjenppi.menlhk.go.id/reddplus/images/adminppi/dokumen/Indonesia-2nd_BUR_web.pdf.
- MoEF. 2018. MRV Protocol for The Indonesia-Norway Partnership on Climate, Forests and Peat. http://ditjenppi.menlhk.go.id/reddplus/images/adminppi/dokumen/MRV-protocol_final.pdf.
- MoEF. 2016. National Forest Reference Emission Level For Deforestation And Forest Degradation. http://ditjenppi.menlhk.go.id/reddplus/images/resources/frel/FREL-Submission-by-Indonesia-2016.pdf.
- MoFor. 2004. Peraturan Menteri Kehutanan Nomor: P.14/Menhut-II/2004 Tentang Tata Cara Aforestasi dan Reforestasi Dalam Kerangka Mekanisme Pembangunan Bersih. (p. 1. article 1). Ministry of Forestry. Jakarta.

Annexes

Annex 1. The Calculation of Emission from Deforestation and Forest Degradation

Deforestation and forest degradation emission was calculated using the following equation:

$$\square \square \stackrel{\star}{\longrightarrow} \square \stackrel{\star}{\longrightarrow} \square \stackrel{\star}{\longrightarrow} \square \stackrel{\star}{\longrightarrow} \square$$
 (1)

Where $GE_{ij} = CO_2$ emissions from deforested or forest degraded area-i at forest change class-j, in tCO_2e . $A_{ij} =$ deforested or forest degradation area-i in forest change class j, in hectares (ha). $EF_j =$ Emission Factor from the loss of carbon stock due to change of forest class-j, owing to deforestation or forest degradation; in tons carbon per ha (tC ha⁻¹). Emission factor from deforestation and forest degradation see table annex 1.1 and table annex 1.2 respectivly. Emission from deforestation and forest degradation at period t (GE_t) was estimated using the following equation:

$$\square \stackrel{*}{=} \sum_{\stackrel{*}{=} 1}^{*} \sum_{\stackrel{*}{=} 1}^{*} \square \stackrel{*}{=} \stackrel{*}$$

Where, GE_t written in tCO_2 , GE_{ij} is emission from deforested or degraded forest area-i in forest class j expressed in tCO_2 . N is the number of deforested or degraded forest area unit at period t (from t_0 to t_1), expressed without unit. P is the number of forest classes, which meet natural forest criterion.

Table Annex 1.1. Deforestation Emission Factor

Forest Classes	Emission Factors of Deforestation (tCO2-e)							
Torest classes	JAWA	KALIMANTAN	MALUKU	NUSABALI	PAPUA	SULAWESI	SUMATERA	
Primary Dryland Forest	458,8	464,7	519,9	473,3	412,4	474,7	463,3	
Secondary Dryland Forest	294,1	350,7	383,1	280,6	311,2	356,2	314,3	
Primary Mangrove Forest	455,2	455,2	455,2	455,2	455,2	455,2	455,2	
Primay Swamp Forest	332,5	474,0	332,5	332,5	308,4	369,8	380,9	
Secondary Mangrove Forest	348,0	348,0	348,0	348,0	348,0	348,0	348,0	
Secondary Swamp Forest	274,8	294,1	274,8	274,8	251,3	221,3	261,1	

^{*)} If not avaialable data for the emission factor by island, used National Average

Table Annex1.2. Forest Degradation Emission Factor

ForestClasses		Emission Factors of Forest Degradation (tCO2-e)								
1016316183363	JAWA	KALIMANTAN	MALUKU	NUSABALI	PAPUA	SULAWESI	SUMATERA			
Primary Dryland Forest	164,7	114,0	136,8	192,7	101,3	118,5	149,0			
Secondary Dryland Forest	107,3	107,3	107,3	107,3	107,3	107,3	107,3			
Primary Mangrove Forest	57,7	179,9	57,7	57,7	57,1	148,5	119,7			

^{*)} If not avaialable data for the emission factor by island, used National Average

The estimation of emission from deforestation and forest degradation from the loss of aboveground biomass between two years used the land use transition matrix (LUTM). LUTM derived from the spatial analysis of series of land cover maps, for example series years: 2012 - 2013. Table annex 1.4 provides an example of LUTM transition matrix for the period 2012 - 2013. The emissions from the change of forest change class-j to non-forest classes were calculated using the equation (1). For example, to calculate the emissions from deforestation from primary dryland forest (class code 2001) (GE_{2001}) in tCO₂e, we used the equation (3). Detail class code for the land cover data see table annex 1.3.

$$GE_{2001} = AD * EF \tag{3}$$

Where AD is the change of primary dryland forests (code 2001) to non-forests in the period in hectare; and EF is the emission factor for deforestation of the corresponding class in ton CO_2e/ha (see. Table annex 1.4 and 1.5 presents the sample of the emission matrix from deforestation of all forest classes in 2012-2013).

Table Annex 1.3. Land cover classes used in the Forest Reference Emission Level

No	Land-cover class	Class Code	Abbreviation
1.	Primary dryland forest	2001	PF
2.	Secondary dryland forest	2002	SF
3.	Primary mangrove forest	2004	PMF
4.	Secondary mangrove forest	20041	SMF
5.	Primary swamp forest	2005	PSF
6.	Secondary swamp forest	20051	SSF
7.	Plantation forest	2006	TP
8.	Estate crop	2010	EP
9.	Pure dry agriculture	2009	AUA
10.	Mixed dry agriculture	20091	MxUA
11.	Dry shrub	2007	Sr
12.	Wet shrub	20071	SSr
13.	Savanna and Grasses	3000	Sv
14.	Paddy Field	20093	Rc
15.	Open swamp	50011	Sw
16.	Fish pond/aquaculture	20094	Ро
17.	Transmigration areas	20122	Tr
18.	Settlement areas	2012	Se
19.	Port and harbor	20121	Ai
20.	Mining areas	20141	Mn
21.	Bare ground	2014	Br
22.	Open water	5001	WB
23.	Clouds and no-data	2500	Ot

Emissions from the deforestation of other forest classes use similar equation with corresponding emission factors. Therefore the total emission from deforestation of all different forest classes is estimated using the equation (4):

$$GE_{t} = GE_{2001} + GE_{2002} + GE_{2004} + GE_{2005} + GE_{20041} + GE_{20051}$$
(4)

Table Annex 1.4. An example of land use transition matrix of deforestation in the period of 2012-2013 in hectares.

	LC			LC 2	2012 (ha)			
		2001	2002	2004	2005	.20041	20051	Total
	2006		12,253		85	671	39,285	52,294
	2007	12,120	182,408	0	242		2,175	196,945
	2010	177	26,411		858	104	35,245	62,795
	2012		220	46	0			265
	2014	8,690	183,816	169	2,405	8,035	144,190	347,303
	20071	76	753	741	4,254	3,768	92,907	102,499
LC 2013	20091	188	11,553		677	47	1,725	14,190
LC 2	20092	9,005	121,818	0	28		1,246	132,098
	20093		283		873			1,156
	20094				1,672		1,454	3,127
	20121		93					93
	20122		330					330
	20141	301	3,985	34	268	4	1,321	5,912
	50011						241	241
	Total	30,556	543,923	990	11,361	12,628	319,790	919,248

Table Annex 1.5. An example of CO_2 emission matrix from deforestation due to loss of above-ground biomass in the period 2012-2013 in tCO_2 e.

D.O	433 111 (1	10 period 201	.2-2013 111 100		/·			
ıc	Classes			LC 2012	(tCO2e)			
	Classes	2001	2002	2004	2005	20041	20051	Total
	2006	-	4,178,506	-	28,287	233,445	10,794,481	15,234,720
	2007	5,560,995	62,203,571	0	80,370	-	597,544	68,442,479
	2010	81,178	9,006,342	-	285,338	36,153	9,684,551	19,093,562
	2012	-	74,909	20,825	0	-	-	95,734
	2014	3,986,975	62,683,426	76,931	799,633	2,795,735	39,619,980	109,962,679
3	20071	34,773	256,747	337,179	1,414,599	1,311,084	25,528,741	28,883,123
2013	20091	86,073	3,939,799	-	225,107	16,241	474,084	4,741,304
LC 2	20092	4,131,907	41,541,623	0	9,248	-	342,373	46,025,152
] _	20093	-	96,588	1	290,157		-	386,745
	20094	-	-	-	556,083	-	399,583	955,666
	20121	-	31,768		-	-	-	31,768
	20122	-	112,529		-	-	-	112,529
	20141	137,911	1,358,785	15,547	89,137	1,255	363,087	1,965,723
	50011	-	-	-	-	-	66,353	66,353
	Total	14,019,813	185,484,592	450,481	3,777,960	4,393,912	87,870,778	295,997,537 *

^{*}Note: The total of emission in this calculation is different from the actual emissions in 2013 because this example used the national EF values instead of island-grouping EF values.

For the calculation purposes LUTM as shown in table annex 1.3 summarized by islands, land cover classes and by year period. Detail information for emission from deforestation and forest degradation calculation see table annex 1.5-1.8

Table annex 1.5. Activity Data for Deforestation

Island/Soil/ Land Cover	2005 2000	2000 2011	2011 2012	Deforestati		2011 2015		2015 2015
CURARTEDA	2006-2009	2009-2011	2011-2012	2012-2013	2013-2014	2014-2015	2015-2016	2016-2017
SUMATERA PEAT	1.420.549	502.062	367.706	307.579	151.461	210.212	213.258	152.982 28.392
Primary Dryland Forest	433.076	204.652	108.510	82.362	65.608	90.962	32.841 613	26.392
Secondary Dryland Forest	14.920	2.708	3.691	512	314	986	013	228
Primary Mangrove Forest	0	2.700	3.031	312	314	10	15	1
Secondary Mangrove Forest	751	1.087	547	50	38	421	654	262
Primary Swamp Forest	37.901	10.757	5.678	5.163	1.110	9.949	10.712	703
Secondary Swamp Forest	379.503	190.100	98.595	76.637	64.146	79.596	20.846	27.174
MINERAL	987.473	297.410	259.195	225.217	85.854	119.250	180.417	124.591
Primary Dryland Forest	8.063	7.871	7.300	7.479	8.628	2.429	22.229	14.231
Secondary Dryland Forest	752.153	181.813	202.431	188.383	57.801	83.576	128.923	91.871
Primary Mangrove Forest	1.043	110	715	145	4	1.400	1.316	901
Secondary Mangrove Forest	24.441	2.906	5.485	1.894	1.508	4.865	11.195	6.893
Primary Swamp Forest	5.001	236	134	492	23	1.044	3.983	155
Secondary Swamp Forest	196.772	104.473	43.130	26.823	17.889	25.935	12.771	10.539
KALIMANTAN	1.021.058	458.046	292.796	494.080	154.089	348.008	423.404	315.302
PEAT	234.606	99.684	52.164	127.764	23.146	172.957	90.678	24.439
Primary Dryland Forest					16		367	
Secondary Dryland Forest	5.580	1.407	2.054	3.973	184	322		415
Primary Mangrove Forest		213					0	
Secondary Mangrove Forest	341	19	66	159	20	106	19	210
Primary Swamp Forest	3.837	2.058	339	4.556	503	3.446	9	333
Secondary Swamp Forest	224.847	95.987	49.704	119.076	22.423	169.082	90.282	23.480
MINERAL	786.452	358.362	240.632	366.317	130.944	175.051	332.726	290.863
Primary Dryland Forest	2.968	362	6.968	11.088	1.967	1.870	5.504	1.632
Secondary Dryland Forest	584.102	273.274	194.914	262.861	106.896	113.193	241.082	256.555
Primary Mangrove Forest	493	133	164	593	10	116	452	244
Secondary Mangrove Forest	22.061	3.608	8.768	5.791	3.828	5.674	11.547	7.608
Primary Swamp Forest	3.237	7	600	122	28	516	577	170
Secondary Swamp Forest	173.591	80.977	29.219	85.863	18.214	53.682	73.563	24.654
PAPUA	115.232	31.876	43.003	23.880	22.309	81.321	17.323	51.129
PEAT	11.987	1.729	1.039	590	1.556	4.201	1.459	2.240
Primary Dryland Forest	48	229	590		75	254	98	364
Secondary Dryland Forest	1.848	1.359	298	304	473	1.490	740	1.006
Primary Mangrove Forest	52		37	22		18	0	42
Secondary Mangrove Forest	212	10	49			0	0	40
Primary Swamp Forest	4.911	105	66	264	642	1.309	271	788
Secondary Swamp Forest	4.916	25			366	1.130	350	
MINERAL Drimony Dryland Forest	103.246	30.147	41.964	23.290	20.753	77.121	15.863	48.889
Primary Dryland Forest	17.442 69.499	14.118 9.952	9.116 22.597	3.892 16.312	5.654 11.243	19.268 34.274	4.820 9.438	14.659 32.327
Secondary Dryland Forest				10.312			9.438	
Primary Mangrove Forest	49 372	339	173 238	106	599 31	1.276 165	0	134 201
Secondary Mangrove Forest Primary Swamp Forest	8.403	4.974	1.532	1.931	1.129	4.859	1.422	1.513
Secondary Swamp Forest	7.481	677	8.308	1.049	2.097	17.279	1.422	56
SULAWESI	140.533	74.658	19.448	46.192	16.950	56.839	91.981	77.842
MINERAL	140.533	74.658	19.448	46.192	16.950	56.839	91.981	77.842
Primary Dryland Forest	4.327	18.996	1.892	6.782	1.729	6.727	17.285	6.417
Secondary Dryland Forest	121.052	54.885	17.268	38.410	14.080	47.488	68.042	65.222
Primary Mangrove Forest	193	116	17.200	60	200	60	619	270
Secondary Mangrove Forest	3.722	556	223	860	708	2.221	5.131	4.247
Primary Swamp Forest	3.722	330	223	555	, 66	91	5:151	3
Secondary Swamp Forest	11.239	105	65	80	233	251	904	1.683
JAWA	13.244	6.100	1.294	4.349	12.976	4.495	5.015	29.863
MINERAL	13.244	6.100	1.294	4.349	12.976	4.495	5.015	29.863
Primary Dryland Forest	84	150				81		7
Secondary Dryland Forest	6.377	5.943	1.294	3.068	12.950	4.414	5.008	29.812
Primary Mangrove Forest							8	
Secondary Mangrove Forest	6.783	7		1.280	26		0	43
Primary Swamp Forest								
Secondary Swamp Forest								
BALI NUSA	4.877	3.612	55.092	906	1.308	18.630	30.394	9.332
MINERAL	4.877	3.612	55.092	906	1.308	18.630	30.394	9.332
Primary Dryland Forest	190	146	1.409		12	729	3.437	623
Secondary Dryland Forest	4.687	3.194	52.111	864	1.288	17.512	24.493	8.664
Primary Mangrove Forest		157	1.569			302	779	10
Secondary Mangrove Forest		115	3	42	9	87	1.684	34
Primary Swamp Forest								
Secondary Swamp Forest								
MALUKU	25.965	24.687	6.713	7.001	3.962	16.780	44.391	37.388
MINERAL	25.965	24.687	6.713	7.001	3.962	16.780	44.391	37.388
Primary Dryland Forest	309	1.732	10	10	0	599	4.476	1.033
Secondary Dryland Forest	25.371	21.911	6.590	6.607	3.864	15.903	36.478	33.612
Primary Mangrove Forest	188	1	112	60	75	11	782	650
Secondary Mangrove Forest	48	22		324	22	225	2.522	1.449
Primary Swamp Forest						41	63	23
Secondary Swamp Forest	50	1.021					70	622
Grand Total	2.741.459	1.101.040	786.052	883.986	363.056	736.285	825.766	673.838
Annual Rate	913.820	550.520	786.052	883.986	363.056	736.285	825.766	673.838

Table annex 1.6. Emission from Deforestation

Island/Soil/ Land Cover	2006-2009	2009-2011	2011-2012	mission of Deforestati 2012-2013	2013-2014	2014-2015	2015-2016	2016-2017
SUMATERA	420.883.277	144.191.690	109.810.804	92.745.350	44.656.423	61.929.177	70.205.419	48.624.920
PEAT	118.492.775	54.970.891	29.260.741	22.158.419	17.286.314	25.036.735	10.042.414	7.538.507
Primary Dryland Forest	-	54.570.051	25.200.741	-	17.200.314	25.030.735	284.071	11.246
Secondary Dryland Forest	4.689.089	851.204	1.159.915	160.932	98.741	309.837	2011072	71.661
Primary Mangrove Forest	39	031.204	1.133.313	100.552	50.741	4.745	7.015	357
Secondary Mangrove Forest	261.438	378.070	190.166	17.396	13.237	146.388	227.560	91.095
Primary Swamp Forest	14.434.966	4.097.021	2.162.697	1.966.415	422.655	3.789.269	4.079.744	267.610
Secondary Swamp Forest	99.107.243	49.644.596	25.747.962	20.013.676	16.751.682	20.786.496	5.444.024	7.096.538
MINERAL	302.390.501	89.220.800	80.550.063	70.586.930	27.370.109	36.892.441	60.163.005	41.086.413
Primary Dryland Forest	3.735.588	3.646.567 57.139.657	3.382.225	3.465.079 59.204.427	3.997.422	1.125.595	10.298.983	6.593.370 28.873.039
Secondary Dryland Forest	236.384.152		63.619.388		18.165.666	26.265.891	40.517.552	
Primary Mangrove Forest	474.712	50.144	325.273	66.050	1.841	637.533	598.976	410.272
Secondary Mangrove Forest	8.504.403	1.011.233	1.908.662	659.179	524.669	1.692.790	3.895.212	2.398.385
Primary Swamp Forest	1.904.686	90.033	51.183	187.292	8.709	397.743	1.517.033	59.002
Secondary Swamp Forest	51.386.961	27.283.165	11.263.332	7.004.902	4.671.802	6.772.889	3.335.249	2.752.345
KALIMANTAN	336.715.544	150.934.121	99.113.621	163.552.430	52.018.018	110.131.543	139.964.049	108.096.594
PEAT	70.020.864	29.801.789	15.521.875	38.627.665	6.911.763	51.509.673	26.733.427	7.281.992
Primary Dryland Forest	-	-	-	-	7.352	-	170.762	-
Secondary Dryland Forest	1.956.875	493.569	720.310	1.393.281	64.510	113.016	-	145.684
Primary Mangrove Forest	-	96.793	-	-	-	-	0	-
Secondary Mangrove Forest	118.808	6.585	22.874	55.250	6.916	36.935	6.677	73.165
Primary Swamp Forest	1.818.590	975.570	160.870	2.159.536	238.517	1.633.405	4.475	157.742
Secondary Swamp Forest	66.126.590	28.229.273	14.617.820	35.019.598	6.594.467	49.726.316	26.551.513	6.905.401
MINERAL	266.694.680	121.132.332	83.591.746	124.924.765	45.106.256	58.621.870	113.230.621	100.814.602
Primary Dryland Forest	1.379.197	168.346	3.237.846	5.152.481	914.135	868.794	2.557.852	758.506
Secondary Dryland Forest	204.828.256	95.829.702	68.350.879	92.177.862	37.485.591	39.693.652	84.540.815	89.966.547
Primary Mangrove Forest	224.391	60.737	74.553	269.725	4.741	52.854	205.919	111.072
Secondary Mangrove Forest	7.676.186	1.255.286	3.050.840	2.014.893	1.331.805	1.974.440	4.017.905	2.647.275
Primary Swamp Forest	1.534.207	3.290	284.575	57.889	13.289	244.571	273.593	80.496
Secondary Swamp Forest	51.052.443	23.814.970	8.593.053	25.251.915	5.356.695	15.787.558	21.634.538	7.250.706
PAPUA	36.885.199	11.341.006	13.903.308	7.763.045	7.457.005	26.355.263	5.851.738	17.455.469
PEAT	3.442.148	559.777	390.045	186.171	467.894	1.264.206	442.373	739.077
Primary Dryland Forest	19.763	94.536	243.141		30.771	104.686	40.496	149.924
Secondary Dryland Forest	575.023	423.014	92.586	94.537	147.045	463.563	230.388	313.153
Primary Mangrove Forest	23.507	123.011	16.751	10.182	117.015	8.241	0	18.958
Secondary Mangrove Forest	73.782	3.528	17.209	10.102		1	0	14.060
Primary Swamp Forest	1,514,477	32.378	20.357	81.452	198.043	403.850	83.632	242.983
Secondary Swamp Forest	1.235.595	6.322	20.557	61.432	92.036	283.865	87.857	242.303
MINERAL	33.443.051	10.781.229	13.513.264	7.576.874	6.989.110	25.091.057	5.409.366	16.716.392
Primary Dryland Forest	7.193.579	5.822.406	3.759.747	1.605.167	2.331.955	7.946.769	1.987.875	6.045.666
							2.936.697	
Secondary Dryland Forest	21.626.292	3.096.742	7.031.483	5.075.787	3.498.439	10.665.161		10.059.389
Primary Mangrove Forest	22.238	39.938	78.804	26.720	272.725	580.833	49	60.953
Secondary Mangrove Forest	129.426	118.127	82.826	36.720	10.638	57.324	0	69.847
Primary Swamp Forest	2.591.521	1.533.952	472.547	595.489	348.343	1.498.536	438.648	466.502
Secondary Swamp Forest	1.879.994	170.062	2.087.856	263.710	527.011	4.342.434	46.096	14.034
SULAWESI	-							
MINERAL	49.042.074	28.836.263	7.141.031	17.244.853	6.224.841	20.997.728	34.708.041	28.251.896
Primary Dryland Forest	2.054.188	9.017.254	898.220	3.219.442	820.936	3.193.482	8.204.968	3.046.245
Secondary Dryland Forest	43.117.649	19.549.660	6.150.751	13.681.195	5.015.265	16.914.895	24.235.884	23.231.447
Primary Mangrove Forest	88.027	52.621	-	27.198	90.942	27.261	281.619	122.905
Secondary Mangrove Forest	1.294.928	193.456	77.758	299.280	246.201	772.943	1.785.439	1.477.678
Primary Swamp Forest	-	-	-	-	-	33.663	-	1.073
Secondary Swamp Forest	2.487.282	23.271	14.302	17.738	51.498	55.485	200.130	372.547
JAWA	-	-	-	-	-	-	-	-
MINERAL	4.274.374	1.819.032	380.515	1.347.901	3.817.679	1.335.358	1.476.122	8.785.955
Primary Dryland Forest	38.733	68.813	-	-	-	37.158	-	3.440
Secondary Dryland Forest	1.875.450	1.747.742	380.515	902.375	3.808.571	1.298.199	1.472.697	8.767.708
Primary Mangrove Forest	-	-	-	-	-	-	3.416	-
Secondary Mangrove Forest	2.360.191	2.477	-	445.526	9.108	-	9	14.806
Primary Swamp Forest	-	-	-	-	-	-	-	-
Secondary Swamp Forest	-	-	-	-	-	-	-	-
BALI NUSA	-	-	-	-	-	-	-	-
MINERAL	1.405.503	1.076.968	16.006.653	257.243	370.065	5.427.472	9.441.304	2.742.926
Primary Dryland Forest	90.165	68.980	666.880		5.528	345.190	1.626.904	294.696
Secondary Dryland Forest	1.315.338	896.307	14.624.485	242.544	361.353	4.914.636	6.873.880	2.431.600
Primary Mangrove Forest	-	71.684	714.153	2.0		137.275	354.420	4.641
Secondary Mangrove Forest	-	39.996	1.134	14.699	3.184	30.371	586.100	11.988
Primary Swamp Forest	-	33.330	1.134	14.053	3.104	50.571	500.100	
Secondary Swamp Forest	-	-	-	-		-	-	-
MALUKU Swamp Forest		-	-	-	-	-	-	
			2.581.187	2 070 404	1 522 402	6 504 404	17 575 400	14 202 072
MINERAL Drimany Dryland Forest	9.995.918	9.583.000		2.676.184	1.522.482	6.501.181	17.575.409	14.392.072
Primary Dryland Forest	160.574	900.288	5.386	5.101	1 400 401	311.499	2.326.890	536.952
Secondary Dryland Forest	9.719.546	8.394.018	2.524.810	2.531.081	1.480.491	6.092.518	13.974.744	12.876.639
Primary Mangrove Forest	85.626	465	50.990	27.131	34.368	5.072	356.039	295.948
Secondary Mangrove Forest	16.530	7.626	-	112.872	7.623	78.389	877.473	504.233
Primary Swamp Forest	-	-	-	-	-	13.703	20.914	7.487
Secondary Swamp Forest	13.642	280.602		-	-	-	19.349	170.814
Grand Total	859.201.888	347.782.079	248.937.119	285.587.006	116.066.514	232.677.722	279.222.082	228.349.830
Annual Rate	286.400.629	173.891.040	248.937.119	285.587.006	116.066.514	232.677.722	279.222.082	228.349.830

Table annex 1.7 Activity Data for Forest Degradation

Island/Soil/ Land Cover								
	2006-2009	2009-2011	2011-2012	2012-2013	2013-2014	2014-2015	2015-2016	2016-2017
SUMATERA	70.409	45.463	2.346	16.598	1.166	39.162	228.412	94.172
PEAT	33.571	15.421	2.228	3.943	248	529	24.439	96
Primary Dryland Forest					248			5
Primary Mangrove Forest	258					381	81	20
Primary Swamp Forest	33.313	15.421	2.228	3.943		149	24.358	71
MINERAL	36.838	30.042	118	12.654	917	38.633	203.973	94.076
Primary Dryland Forest	3.595	24.480	26	1.230	774	26.598	185.991	91.761
Primary Mangrove Forest	28.134	2.939		600		11.494	3.552	2.044
Primary Swamp Forest	5.109	2.624	93	10.824	144	541	14.431	271
KALIMANTAN	70.608	18.019	10.210	7.751	37.644	163.876	74.153	88.304
PEAT	740	166	10.210	434	1.209	9.064	1.569	3.223
Primary Dryland Forest			10.210			37		
Primary Mangrove Forest					75			1.330
Primary Swamp Forest	740	166		434	1.135	9.027	1.569	1.893
MINERAL	69.868	17.853		7.317	36.434	154.811	72.584	85.081
Primary Dryland Forest	67.975	17.713		6.157	35.782	145.535	70.604	81.102
Primary Mangrove Forest	1.887			284	442	238	1.288	3.650
Primary Swamp Forest	7	140		875	209	9.038	691	329
PAPUA	992.217	62.177	6.165	168.199	52.894	263.144	162.406	74.612
PEAT	47.726	5.941	710	14.287	4.264	8.741	5.965	2.506
Primary Dryland Forest	14.533	535		4.573	330	8.111	2.199	1.793
Primary Mangrove Forest	3.205	255		3.887	4	325	1.084	7
Primary Swamp Forest	29.988	5.151	710	5.828	3.930	306	2.682	706
MINERAL	944.491	56.236	5.455	153.912	48.630	254.402	156.442	72.106
Primary Dryland Forest	817.699	37.989	1.009	138.898	29.573	249.465	135.226	64.982
Primary Mangrove Forest	5.547	53	1.005	2.642	2.769	568	2.354	363
Primary Swamp Forest	121.244	18.194	4.445	12.372	16.288	4.369	18.862	6.761
SULAWESI	97.610	186.799	10.462	9.113	4.706	112.521	63.622	21.274
MINERAL	97.610							21.274
Primary Dryland Forest	95.666	186.799 186.707	10.462 10.462	9.113 9.113	4.706 3.250	112.521 111.322	63.622 63.334	20.734
			10.462	9.113				
Primary Mangrove Forest	1.944	92			1.457	850	282	540
Primary Swamp Forest	207.400					349	7	
JAWA	267.460				43	1.021	242	308
MINERAL	267.460				43	1.021	242	308
Primary Dryland Forest	266.518				43	1.021	107	31
Primary Mangrove Forest	942						87	277
Primary Swamp Forest							48	
BALI NUSA	59.491	2.107	15.010	255	1.158	75.660	46.856	45.813
MINERAL	59.491	2.107	15.010	255	1.158	75.660	46.856	45.813
Primary Dryland Forest	59.457	2.107	14.387	255	1.135	74.541	44.739	44.248
Primary Mangrove Forest	33		624		23	1.119	2.117	1.565
Primary Swamp Forest								
MALUKU	5.266	7.460		153	405	48.015	39.764	1.468
MINERAL	5.266	7.460		153	405	48.015	39.764	1.468
Primary Dryland Forest	56	7.375		0	41	45.665	38.719	562
Primary Mangrove Forest	5.210	85		153	364	1.628	928	716
Primary Swamp Forest						722	117	189
Grand Total	1.563.061	322.024	44.193	202.070	98.015	703.398	615.456	325.951
Annual Rate	521.020	161.012	44.193	202.070	98.015	703.398	615.456	325.951

Table annex 1.8. Emission from Forest Degradation

Island/Soil/ Land			Emi	ssion of Forest Degra	datin (t CO2e/Perio	de)		
Cover	2006-2009	2009-2011	2011-2012	2012-2013	2013-2014	2014-2015	2015-2016	2016-2017
SUMATERA	8.180.804	6.123.553	281.552	2.015.499	169.487	5.320.279	32.751.495	13.938.310
PEAT	4.015.537	1.845.991	266.654	472.061	37.001	58.608	2.924.541	11.362
Primary Dryland Fc		-	-	-	37.001	-		690
Primary Mangrove	27.715		-			40.826	8.682	2.172
Primary Swamp Fo	3.987.823	1.845.991	266.654	472.061		17.781	2.915.858	8.500
MINERAL	4.165.267	4.277.562	14.898	1.543.438	132.487	5.261.672	29.826.955	13.926.948
Primary Dryland Fc	535.760	3.648.214	3.819	183.317	115.301	3.963.940	27.718.485	13.675.261
Primary Mangrove	3.017.890	315.264	5.025	64.405	-	1.232.978	381.020	219.252
Primary Swamp Fo	611.617	314.083	11.078	1.295.717	17.186	64.753	1.727.450	32.435
KALIMANTAN	8.086.937	2.074.535	1.164.151	968.117	4.377.040	19.873.083	8.594.843	10.180.890
PEAT	133.138	29.841	1.164.151	78.140	212.145	1.628.240	282.251	483.215
Primary Dryland Fc	155.156	25.041	1.164.151	76.140	212.145	4.262	202.231	403.213
	-	-		-	0.027	4.202	-	442.674
Primary Mangrove	422.420	20.044	-	70.440	8.037	4 (22 070	202.254	142.674
Primary Swamp Fo	133.138	29.841	-	78.140	204.109	1.623.978	282.251	340.541
MINERAL	7.953.798	2.044.694	-	889.977	4.164.895	18.244.844	8.312.591	9.697.675
Primary Dryland Fc	7.750.208	2.019.584	-	701.985	4.079.749	16.593.359	8.050.008	9.246.863
Primary Mangrove	202.364	-	-	30.501	47.466	25.571	138.189	391.559
Primary Swamp Fo	1.227	25.110	-	157.491	37.680	1.625.913	124.395	59.253
PAPUA	93.838.185	5.266.497	396.533	16.266.071	4.479.502	26.442.652	15.513.275	7.227.115
PEAT	3.527.439	375.587	40.539	1.212.667	258.234	873.525	492.046	222.642
Primary Dryland Fc	1.471.483	54.155	-	463.009	33.453	821.203	222.620	181.574
Primary Mangrove	343.802	27.364	-	416.927	383	34.847	116.311	766
Primary Swamp Fo	1.712.154	294.067	40.539	332.731	224.398	17.476	153.115	40.302
MINERAL	90.310.746	4.890.910	355.994	15.053.404	4.221.268	25.569.126	15.021.230	7.004.473
Primary Dryland Fc	82.793.340	3.846.429	102.203	14.063.626	2.994.316	25.258.734	13.691.810	6.579.534
Primary Mangrove	595.056	5.716	-	283.386	297.029	60.953	252.498	38.902
Primary Swamp Fo	6.922.350	1.038.765	253.791	706.391	929.922	249.439	1.076.921	386.037
SULAWESI	-	-	-	-	-	-	-	-
MINERAL	11.545.054	22.134.776	1,239,767	1.079.892	541.357	13.282.864	7.535.324	2.514.874
Primary Dryland Fc	11.336.537	22.124.946	1.239.767	1.079.892	385.094	13.191.710	7.505.074	2.456.982
Primary Mangrove	208.517	9.830	-		156.263	91.154	30.249	57.892
Primary Swamp Fo			-					
JAWA	-	-	-	-	-	-	-	
MINERAL	44.004.030	-			7.155	168.132	26.901	34.876
Primary Dryland Fc	43.903.005	-	-	-	7.155	168.132	17.558	5.165
Primary Mangrove	101.025	-			7.133	100.132	9.343	29.710
Primary Swamp Fo	101.025	-	-		-	-	9.545	29.710
BALI NUSA	-	-	-	-	-	-	-	-
MINERAL	11.459.326	405.877	2.838.799	49.185	221.093	14.481.974	8.847.070	8.693.215
			2.771.894	49.185	218.606			8.525.321
Primary Dryland Fc	11.455.750	405.877				14.361.912	8.619.999	
Primary Mangrove	3.576	-	66.904	-	2.488	120.062	227.071	167.894
Primary Swamp Fo	-	-	-	-	-	-	-	-
MALUKU			-					
MINERAL	566.525	1.017.882	-	16.434	44.619	6.420.947	5.395.740	153.762
Primary Dryland Fc	7.654	1.008.801	-	1	5.550	6.246.289	5.296.195	76.932
Primary Mangrove	558.871	9.081	-	16.433	39.069	174.658	99.544	76.830
Primary Swamp Fo	-	-	-	-	-	-	-	-
Grand Total	177.680.861	37.023.120	5.920.802	20.395.198	9.840.253	85.989.932	78.664.647	42.743.041
Annual Rate	59.226.954	18.511.560	5.920.802	20.395.198	9.840.253	85.989.932	78.664.647	42.743.041

Annex 2. Emissions From Peat Decomposition

Emissions from peat decomposition have been reported in technical annex BUR until 2017. Explanation of the calculation has also been stated in the technical annex of the BUR. The following article is only to clarify the calculation process to obtain the achievement figures in 2017.

Peat decomposition: Changing process of peat form as a result of a decline in water levels caused by deforestation and degradation activities, and land utilization.

Inherited emissions: Emission of peat decomposition will continuously occur after peatland is drained due to peat forest land conversions or land utilizations. The emissions will only stop when the peatland is completely decomposed or completely rewetted. Thus, emissions are inherited from one to another after the initial disturbance and the total emission from peat decomposition is the accumulation of peat emissions from 1990 onwards.

Emission factor for peat decomposition emission calculation: The emission factors used in the calculation are derived from the document "2013 supplement to the IPCC 2006 Guidelines for National GHG Inventory: Wetlands (2014)".

These emission factors are used with the assumption that all utilized areas are drained. For instance, if there is a transition from primary swamp forest to secondary swamp forest, we will use the mean emission factor of the two land cover types, $(0+19)/2 = 9.5 \text{ t CO2 ha}^{-1}\text{yr}^{-1}$. Because it was assumed that the transition occurs gradually within the transition period, rather than abruptly in the first or the last year of the period.

There are activities needed to be seriously and continuously done for reducing the emission from peat decomposition. Those mitigation action include peat land rewetting, establishing water management systems for peat land, reducing deforestation and degradation and preventing fires on peat land.

Calculation of emissions from peat decomposition in particular year at the time of deforestation and forest degradation used the same basis as the one used in calculation of emissions from deforestation and forest degradation with the inclusion of inherited emission. As mentioned above, this is because once deforestation and forest degradation occurred in peat forests, there would be emissions from the loss of ABG at the time of conversion as described above, and additional subsequent emissions from peat decomposition at the time of deforestation and forest degradation. In addition, the deforested and degraded peat forests will release further CO_2 emissions in the following years, known as inherited emissions from peat decomposition. The emission from peat decomposition is calculated using Equation follows:

____***-**-**

Where: *PDE_{ijt}* is Peat Decomposition Emission (PDE), i.e. CO₂ emission (tCO₂ yr⁻¹) from peat decomposition occurring in peat forest area-*i* that changed into land-cover type-*j* within time period-*t*; *A_{ijt}* is area-*i* of peat forest that changed into land-cover type-*j* within time period-*t*; *EF_j* is the emission factor from peat decomposition of peat forest that changed into land-cover class-*j* (tCO₂ ha⁻¹ yr⁻¹). Consistent with deforestation and forest degradation activities, the emission from peat decomposition was calculated from 2013 to 2017. The base calculation for peatland emission is the area located on forested peatland in 1990. The emission baseline of peat decomposition for FREL was estimated using a linear equation approach. This estimate will be improved gradually through a stepwise process to produce a more accurate estimate for future implementation.

The decomposition process in organic soil will produce significant carbon emissions when organic soils are drained. The soils will be exposed to the aerobic condition, being oxidised and emit CO₂. In another hand, when forested peatland being converted to other land uses, the organic soils will continuously decompose for years. These emissions are inherited for years after the initial disturbance. Therefore, emissions from peat decomposition will always increase with an additional peatland being deforested. Regarding consistency, the data, methodologies, and procedures used for calculating the results presented in this report are similar to those used when establishing the FREL.

For example, in the land cover transition matrix of peatlands in the 2012-2013 period, the change of primary swamp forest (PSF) to swamp shrubs (SSr) was 3,379 ha (see Table Annex 2.1 at column 5, line 10), which was considered as the activity data. The emission factor used for this land cover transition (Table annex 2.2 at column 5, line 10), was the mean of emissions factor of the two land cover types, in this case (0+19)/2 or equals to $9.5 \text{ tCO}_2/\text{year}$. Thus, the emission from the peat decomposition of this deforestation was $3,379 \times 9.5$ equals to $32,102 \text{ ton } \text{CO}_2$ (see table annex 2.3. at column 5, line 10). In the following years, the emission of peat decomposition from the swamp shrubs continues as inherited emission at a rate of 19 ton CO_2/year . This rate will change if the shrubs are converted to other land use that has different emission factor.

Table Annex 2.1. Land cover transition matrix of peatlands in 2012-2013 period (in hectares)

L	_											2012												Grand
	_ [PF	SF	PMF	SMF	PSF	SSF	TP	Sr	EP	SSr	AUA	MxUA	Rc	Sv	Ро	Sw	Se	Ai	Tr	Br	Mn	WB C)t
PI	F	372,4	46		1			16																372
SI	F	4,57	3 292,0	00			:	.9																296
PI	MF			232,9	28																			232
SI	MF			3,88	7 89,8	38																		93,
P:	SF		2			2,124	918																	2,12
SS	SF		1,14	15	37	10,2	063,36	3,605 7	55 32	9 11	5 10,8	81	22	4								4:	29	3,39
TI	Р		31		50	58	5 27,	950 517	985 4,5	48 1,4	20 19,0	59 11	5 51	8								46,	389	618
Sr	r		1,12	1			1,0	068	106,	438			13											108
EI	Р		10	5	10	15	19,	188 2,2	26 2,0	92 992,	93 42,5	55 8	3:	6,4	67							26,	090	1,09
SS	Sr		34	2 22	13	7 3,3	79 57,	595 2	76 20	5 51	5 1,791	213					5,1	31				9		1,85
Α	UA		8,89	0			1,:	L 8 6		59	8 1,8	84 87,9	88									2:	38	100
2013 M	1xUA		2,10)3				90	55,9	56	4,3	78 2,7	87 120,	91									Ħ	186
[≈] R∈	С										3			51,5	52									51,
S۱	v														31,7	703							П	31,
P	0															1,5	5 5							1,:
S۱	w																95,2	34					П	95,
Se	е																	5,0	14					5,0
A	i																		7	2				-
Ti	r																			66	59			6
В	r		95	Ð	33	6,1	04 93,	206 28,	124 1,0	77 4,1	53 11,5	31 5	8	10) 9							320	,660	466
N	1n		28			,		54	1		3										1,8	+		2,4
w	/B																		1		Ė		824	8
o	_																						\Box	
_	_	377 (19306 7	2836 9	37901	ne 145	203 56	878549	366170	47 999	941,881	53890 9	83121	67581	28 31 7	n3 5	5100	3655 0	14 7	66	9 1 8	23 393	90824	- 11,13

Table Annex 2.2. Matrix of emission factors for peat decomposition (in tCO₂/ha)

	LC											T1												
	LC	PF	SF	PMF	SMF	PSF	SSF	TP	Sr	EP	SSr	AUA	MxUA	Rc	Sv	Po	Sw	Se	Ai	Tr	Br	Mn	WB	Ot
	PF	-	9.5	•	9.5		9.5	36.5	9.5	20.0	9.5	25.5	25.5	17.5	17.5	-		17.5			25.5	25.5		-
	SF	9.5	19.0	9.5	19.0	9.5	19.0	46.0	19.0	29.5	19.0	35.0	35.0	27.0	27.0	9.5	9.5	27.0	9.5	35.0	35.0	35.0	9.5	9.5
	PMF	-	9.5	1	9.5		9.5	36.5	9.5	20.0	9.5	25.5	25.5	17.5	17.5	-	-	17.5	-	25.5	25.5	25.5	-	-
	SMF	9.5	19.0	9.5	19.0	9.5	19.0	46.0	19.0	29.5	19.0	35.0	35.0	27.0	27.0	9.5	9.5	27.0	9.5	35.0	35.0	35.0	9.5	9.5
	PSF	-	9.5	-	9.5	-	9.5	36.5	9.5	20.0	9.5			17.5			-	17.5	-	25.5	25.5	25.5		
	SSF	9.5	19.0	9.5		9.5	19.0	46.0	19.0	29.5	19.0	35.0	35.0	27.0	27.0	9.5	9.5	27.0	9.5	35.0	35.0	35.0	9.5	
	TP	36.5	46.0			36.5		73.0	46.0	56.5	46.0						36.5	54.0		62.0	62.0	62.0		
	Sr	9.5	19.0	9.5	19.0	9.5	19.0	46.0	19.0	29.5	19.0	35.0	35.0	27.0	27.0	9.5	9.5	27.0	9.5	35.0	35.0	35.0	9.5	9.5
	EP	20.0	29.5	20.0	29.5	20.0	29.5	56.5	29.5	40.0	29.5	45.5	45.5	37.5		20.0	20.0	37.5	20.0		45.5	45.5		
	SSr	9.5	19.0			9.5		46.0	19.0	29.5	19.0					9.5	9.5	27.0			35.0	35.0		
	AUA	25.5	35.0			25.5		62.0	35.0	45.5	35.0		51.0			25.5	25.5	43.0			51.0	51.0		
TO	MxUA	25.5	35.0			25.5	35.0		35.0	45.5	35.0			43.0		_	25.5	43.0			51.0	51.0	_	_
	Rc	17.5	27.0	17.5		17.5			27.0	37.5	27.0		_			_	17.5	35.0			43.0	43.0		
	Sv	17.5	27.0	17.5		17.5		54.0	27.0	37.5	27.0					17.5	17.5	35.0	_		43.0	43.0		17.5
	Ро	-	9.5	-	9.5	-	9.5		9.5	20.0	9.5						-	17.5		25.5	25.5	25.5		-
	Sw	-	9.5	-	9.5	-	9.5		9.5	20.0	9.5						-	17.5		25.5	25.5	25.5		-
	Se	17.5	27.0	17.5		17.5		54.0	27.0	37.5	27.0					_	17.5	35.0	17.5		43.0	43.0		17.5
	Ai	-	9.5	-	9.5	-	9.5		9.5	20.0	9.5		_			-	-	17.5		25.5	25.5	25.5	_	-
	Tr	25.5	35.0	25.5		25.5	35.0		35.0	45.5	35.0						25.5	43.0			51.0	51.0		_
	Br	25.5	35.0			25.5	35.0		35.0	45.5	35.0					25.5	25.5	43.0		51.0	51.0	51.0		
	Mn	25.5	35.0	25.5		25.5	35.0		35.0	45.5	35.0					25.5	25.5	43.0			51.0	51.0	25.5	25.5
	WB	-	9.5	-	9.5	-	9.5	36.5	9.5	20.0	9.5			_		_	-	17.5		25.5	25.5	25.5		
	Ot	-	9.5	-	9.5	-	9.5	36.5	9.5	20.0	9.5	25.5	25.5	17.5	17.5	-	-	17.5	-	25.5	25.5	25.5	-	-

Table Annex 2.3. Matrix of CO₂ emissions from peat decomposition (in tCO₂e)

												2012													Grand To
	LC	PF	SF	PMF	SMF	PSF	SSF	TP	Sr	EP	SSr	AUA	MxUA	Rc	Sv	Ро	Sw	Se	Ai	Tr	Br	Mn	WB	Ot	
	PF	-	-	-	5	-	150	-	-	-	-	-	-	-	-	-	-			-			-	-	15
	SF	43,44	2 5,548,0	00 -	-	-	358	-	-	-	-	-	-	-	-	-	-	-		-			-	-	5,591,8
	PMF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-			-	-	-
	SMF	-	-	36,9	41,706,9	13 -	-	-	-	-	-	-	-	-	-	-	-	-		-			-	-	1,743,8
	PSF	-	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-			-	-	16
	SSF	-	21,7	5 0 -	70	96,95	2 64,003,	198 34,74	7 6,26	0 3,38	8 206,7	14 -	7,83	2 -	-	-	-			-		15,0	01 -	-	64,396,
	TP	-	1,43	34 -	2,30	0 21,34	3 -	37,812,	76209,1	90 80,2	5 876,7	16 7,10	8 32,13	7 -	-	-	-					2,876,	95 -	-	41,919,
	Sr	-	21,3	6 -	-	-	20,29	7 -	2,022,3	27 -	-	-	44	-	-	-	-						-	-	2,064,3
	EP	-	3,09	4 -	308	30	566,0	45 125,7	51 61,71	639,715,	7301,255,3	84 4,05	1 1,59	2 242,4	97 -	-	-					1,187,	80 -	-	43,163,
	SSr	-	6,50	6 21:	2,61	1 32,10	2 1,094,3	03 12,69	2 3,92	0 15,1	2 34,033,	041 -	-	-	-	-	48,7	43 -				3,3	7 -	-	35,252,
	AUA	-	311,1	40 -	-	-	41,52	3 -	,	27,2	2 65,95	7 4,487,3	68 -	-	-	-	-					12,1	7 -	-	4,945,3
2013	MxUA	-	73,5	9 -	-	-	17,15	9 -	1,958,4	69 -	153,2	25 142,1	156,139,9	45 -	-	-	-						-	-	8,484,5
2	Rc	-	-	-	-	,	-	-	-	-	89		-	1,804,3	27 -	-	-			-			-	-	1,805,2
	Sv	-	-	-	-	-	-	-	-	-	-	-	-	-	1,109,	21 -	-			-			-	-	1,109,
	Po	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-			-	-	-
	Sw	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-			-	-	-
	Se	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	175,4	194 -	-			-	-	175,4
	Ai	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-			-	-	-
	Tr	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	34,1	30		-	-	34,1
	Br	-	33,5		1,14	7 155,6	50 3,262,2		14 37,68	4 188,9	41 403,5	77 26	4,37	3 4,68	3 8 -	-	-			-		16,353	669 -	-	22,189,
	Mn	-	99	1 -	-	-	19,38	6 -	-	-	97	-	-	-	-	-					92,9	61 -	<u> </u>	<u> </u>	113,4
	WB	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-				-			<u> </u>	<u> </u>	-
	Ot	-	-	_	-	-	-	-	-	-	-	-	-	-	-					_				<u> </u>	-
G	rand Tota	43,44	2 6,021,	8837,1	71,713,9	87 306,3	5369,024,	339,729,	94,299,5	600,030,	186,995,	39,640,9	16,186,3	29,051,	13,109,6	21 -	48,7	43175,4	194	34,1	0 92,9	1 20,447,	359 -	-	232,990

Historical emission from peat decomposition

The emissions from peat decomposition is progressive, due to inherited emissions from previous degraded peatlands. The emissions from peat decomposition will never decrease unless the degraded peatlands are changed into forests, which is unlikely to happen in this period of assessment. In the first FREL document, we developed linear equations from regression analysis using annual peat emissions from historical data. The emissions from peat decomposition were estimated based on the land cover maps. In some years, instead of yearly land cover map, we only have multi-years land cover maps, i.e. 3-yearly (2006 – 2009, 2-yearly (2009-2011) and 1-yearly (2011-2016). We generated annual emission from the average values of the mapping period. Each year has an estimated emission value to be regressed against year.

For the construction of reference emission level 2017-2020, consistent with method in first FREL document used linear projection with equetion $y = 6.706.744,03x - 13.266.946.368,06 R^2 = 0,97$ The reference period 2006/2007 – 2015/2016 (see table annex 2.4 and figure annex 2.1)

Table annex 2.4. Emission from peat decomposition

Year	Peat Decomposition	Actual Emission	
2006-2007	200.067.598		
2007-2008	200.067.598		
2008-2009	200.067.598		
2009-2010	215.742.080		_
2010-2011	215.742.080		Historica
2011-2012	226.109.789		Histo
2012-2013	234.152.020		_
2013-2014	240.799.350		
2014-2015	248.530.578		
2015-2016	255.413.778		
2016-2017	260.556.280	256.694.322	n 03x - 8,06
2017-2018	267.263.024		Projection y = 6.706.744,03x 13.266.946.368,06 R² = 0,97
2018-2019	273.969.768		roje 5.706. (66.94 R² =
2019-2020	280.676.512		Р у = t

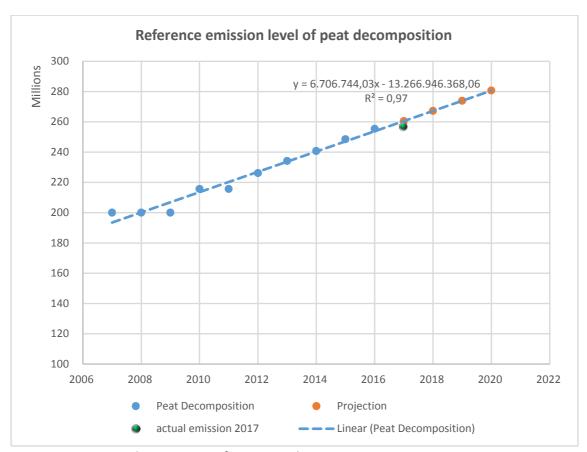


Figure Annex 2.1. The emissions from peat decomposition

Emission Reduction from peat decomposition in 2017

Peat decomposition emissions in 2017 (actual emission 256.694.322 tCO2) , when compared to the historical emissions projections in the reference emission level 2006-2016 (projected in 2017 is $260.556.280~tCO_2$), then the **emission reduction in 2017 is 3.861.958~tCO_2**

Annex 3. Emissions From Peat Fires

Emissions from peat fires have not been included in Indonesia's first FREL calculation. Peat fire emission data is presented in the annex of the first FREL document. However, in the protocol MRV document, emissions from peat fires were also reported. Until now, no reference has been made for peat fires. Thus, the reference to peat fires will be made using peat fire data from 2006-2016. The method and data used for this report are consistent with the annex first FREL document regarding peat fire.

According to the IPCC Supplement for Wetland (IPCC, 2014), emissions from organic soil fires are calculated with the following formula:

Where, $\Box_{\square\square}^*$ is emission from peat fires, A is burned peat area, MB is mass of fuel available for combustion, CF is combustion factor (default factor = 1.0) and G_{ef} is emissions factor.

Fire activity data from 2006-2014 used a method developed by the Mitsubishi Research Institute (MRI) with a 1×1 km grid approach.

Tier 1 estimation of peat fire emission requires data on burn scar area. The currently available methods for determining burned scar area are based on low resolution MODIS images or hotspots analysis (MRI, 2013). However, the MODIS collection 5 of burned areas (MCD45A1) data had no observation over SE Asia regions, especially for major Islands of Indonesia.

The following is the method adapted from MRI (2013) to generate burn scar map in peatland based on hotspot analysis. The method was developed from a REDD+ demonstration activity project in Central Kalimantan. First, hotspots data are compiled annually from the baseline years (e.g. 1990, 1991, 1992, 1993, etc.). To improve certainty, only hotspots with confidence level of more than 80% are selected. As MODIS hotspots are not available for the period before 2000, NOAA hotspot might be used for to fill the gap. However, comparability and accuracy of NOAA hotspots need to be assessed, as they do not have the information on the confidence level. Second, a raster map with 1×1 km grid (pixel size) is generated and overlaid on top of the hotspot data. Pixels without hotspots are considered as not burned and excluded from the activity data. Each 1km ×1 km pixel with at least one hotspot is considered as burned but with the assumption that the burned area is 75% of the pixel area (7,500 ha). This rule applies for each pixel regardless the number of hotspots within a particular pixel (Figure Annex 4.1). Then, these burned areas were overlaid with the peat land map (produced by MoA) to estimate the burned peat land for each year.

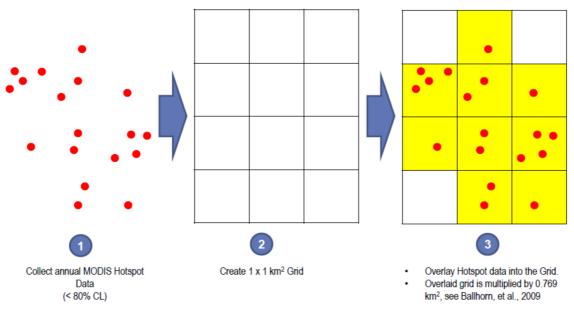


Figure Annex 3.1. Methodology to derive burned area (activity data)

While for 2015 - 2017 fire activity data uses visual interpretation methods, making it more accurate. Based on indications of hotspots with more than 80% confidence level, point density analysis was made. This is to make the initial polygon area burn. Furthermore Landsat with coverage dates after the fire (max. 14 days afterwards) is used as a reference to digitize actual burn scar. As an illustration see the picture ...

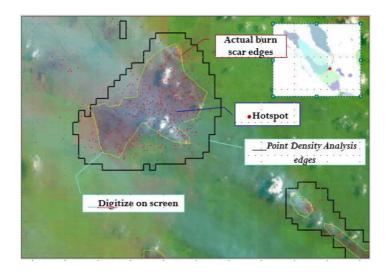


Figure Annex 3.2. Delineation of burn scar

Mass of fuel available for combustion

Mass of fuel available for combustion, MB, is estimated from multiplication of mean depth of burned peat (D) and bulk density (BD), assuming average peat depth burned by fire is 0.33 m (Ballhorn *et al.*, 2009) and bulk density is 0.153 ton/m³ (Mulyani *et al.*, 2012). Resulted mass available for combustion is 0.05049 ton/m² or 504.9 ton/ha.

Emission factor

CO₂ emission factor ($\square_{\square \square}^*$) can be indirectly estimated from organic carbon content ($\square_{\square \square}^*$) of weight), which is equal to:

☐ the can be estimated by the following equation:

$$(1 - \frac{1}{1.724} \times 3.67)$$

Where M_s is mass of soil solids, which is equal to accumulation mass of ash (M_{ash}) and mass of organic matters. Ratio of M_{ash} and M_s is 14.04%, which is the mean ash contents of three peat types; namely, Sapric (4.98%), Hemic (21.28%) and Fibric (15.85%) (see Mulyani et al., 2012).

Adjustment factor of 1/1.724 is used to convert organic matter estimate to organic carbon content. Estimated $\Box_{\square\square\square}^*$ is 49.86% (or kg/kg), which is equal to 498.6 C g/kg dry matter burnt.

If the value is converted to CO_2e , the value would be $\square_{\square\square\square} X - 67 = 1,828.2 \, CO_2 \, g/kg \, dry \, matter burnt or 1,828.2 <math>CO_2 \, kg/ton$. Assuming of 1 ha peat burning, $CO_2 \, emissions \, released \, to \, the atmosphere is:$

- $= 1 \text{ ha} \times 504.9 \text{ t/ha} \times 1,828.2 \text{ kg/t}$
- = 923,058.18 kg/ha
- = 923.1 tCO₂e/ha

This result is used as emission factor of burned peat. Emissions from peatlands that suffer more than one fire event are assumed to be reduced by half compared to that of the first burning, e.g. the first burning of 1 ha peat emits 923.1 tCO₂ (UKP4 and UNORCID, 2013), while the subsequent burning of exactly the same area will release 462 tCO₂. The third burning of the same area will release again a lower amount of emissions than the second burning but further research is necessary to determine the amount of reduction. The above assumption is from a manuscript that resulted from Peat Emission Workshop held by UKP4 and UNORCID (6 November 2013) in Jakarta.

Historical emission from peat fire

For this report, historical emissions from peat fire have been calculated for the period 2006-2016.

It was found that the annual estimated burned peat areas varied greatly from 2006 to 2016 (Figure Annex 3.3). The highest rate occurred in 2015 accounting for 869,754 ha of burned peatland, while the lowest rate occurred in 2010 accounting for 55,664 ha of burned peat area. Using this historical data set, the average value used as activity data for proposed REL from burned peat accounts for 269,686 ha.

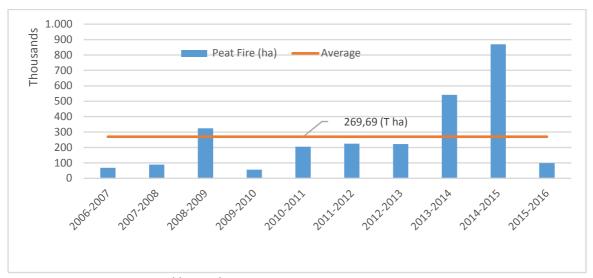


Figure Annex 3.3. Estimated burned peat area

The results of the calculation of emissions from burned peat are shown in Figure Annex 3.4. Average emission from peat fire from 2006 - 2016 is 248,947,149 tCO₂e yr⁻¹. The derivation of the burned areas has not been verified using ground truthing or high-resolution satellite data. Therefore, the uncertainty level cannot be estimated.

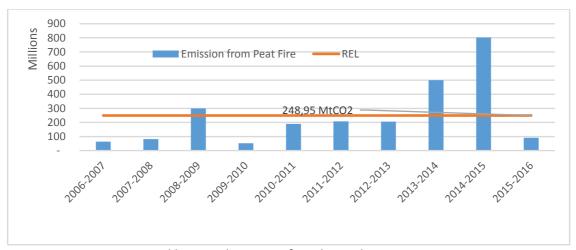


Figure Annex 3.4. Estimated historical emission from burned peat

Emission reduction from peat fire in 2017

Emissions from peat fires in 2017 have decreased dramatically, this was due to massive law enforcement and moratorium policies for new permits on peat and primary forests. The fire incident in peat in 2017 was 13,555 hectares. If it is converted to emissions, it will amount to 12,512,621 tCO₂. When compared to the reference emission level for peat fire (248,947,149 tCO₂), the **emission reduction in 2017 is 236,434,529 tCO₂**.

Constraints in measuring emissions from peat fires

Some critical issues on the accuracy of the burn scar lies in the assumptions used to estimate the size and intensity of the fires. Hotspots are just an indication of active fire existence through thermal differentiation with neighboring pixels. Thus, false detection is possible as a thermal anomaly can originate from other heat sources than fires. Selection of hotspot with high confidence level can reduce such error. However, smoke coverage is very common during fire season, which reduces the sensor's capability to detect fires covered by smokes. This can result in underestimation of the burned areas. In contrast, assuming that the burned area is 75% for each pixel with hotspot might lead to a severe overestimate of the burned area, especially in the border area between burned and unburned.

A further challenge lies in determining the peat depth consumed by fires. Relationship analyses between hotspot parameters (fire intensity, frequency etc.) with burned peat depth need to be carried out to better estimate the burned peat depth of the burned peatland and thus estimate the actual emissions from peat fires. Ballhorn *et al.* (2009) used airborne LIDAR for estimating burned peat depth with accuracy of less than 20 cm. Konecny *et al.* (2016) found that carbon loss varies significantly for recurrent fires in drained tropical peatlands. According to their research the relative burned area depth decreases over the first four fire events and is then constant for further successive fires. They estimate values for the dry mass of peat fuel consumed to be only 58–7% of the current IPCC Tier 1 default value for all fires. This indicates that accurate estimation of emissions from peat fires should also consider the frequency of fires in an area and employ accordingly adjusted emission factors.

Improvement of Peat Fire Data used the data burn area from Ministry of Environment and Forestry with the a new approach for estimating the burned area. This improved method has been applied for estimation of the burn scar, i.e. by combining the Landsat image (quick look original with composite band 645) with the hotspot data and verified with observed burnt area data on the ground. That is able to delineate the burn area. This new approach might be adopted in the future as this approach will have higher certainty.

With above conditions and high level of uncertainties of all involved parameters (hotspot detection, size of burned area estimation, fire frequency, burned peat depth, mass of fuel available for combustion), this FREL document did not include emissions from peat fires. Advancing technology in remote sensing to improve burned scar and peat depth mapping will increase the accuracy of peat fire emission calculation which can then be included as improvement in a future FREL.

Annexes References

- Ballhorn, U., Siegert, F., Mason, M. and Limin, S. 2009 Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. *Proceedings of the National Academy of Sciences of the United States of America*, 106 (50), 21213-21218.
- Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (p. 354). Intergovernmental Panel on Climate Change: (IPPC), Switzerland.
- Konecny, K., Ballhorn, U., Navratil, P., Jubanski, J., Page, S.E., Tansey, K., Hooijer, A., Vernimmen, R. and Siegert, F. 2016. *Variable carbon losses from recurrent fires in drained tropical peatlands*. Global Change Biology 22, pp. 1469–1480.
- MRI 2013. *Green House Gas Reduction Project through Forest Conservation in Peat land in Central Kalimantan*: Mitsubishi Research Institute, Inc.
- Mulyani, et al. 2012. Basis Data Karakteristik Tanah Gambut Di Indonesia. Prosiding Seminar Nasional Pengelolaan Lahan Gambut Berkelanjutan 4 Mei 2012: From http://balittanah.litbang.deptan.go.id